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Abstract
The effect of electron–phonon interaction on the temperature dependence
of the electronic spectrum in thin ferromagnetic semiconducting films is
studied using the s–d interaction model and a Green function formalism
beyond the random phase approximation. We obtain three temperature regions
with different contributions of the damping terms due to the s–d, electron–
electron and electron–phonon interactions. The phonon spectrum is discussed,
too. Additional phonon damping and phonon frequency shift arise when
the electron–phonon interaction is properly included. The phonon linewidth
may be obtained from the cubic terms of the anharmonic phonon–phonon
interaction, while the calculation of the renormalized phonon frequency of
the experimentally obtained frequency shift required inclusion of the quartic
term in the anharmonic interaction. The frequencies in thin ferromagnetic
semiconducting films are smaller and the damping effects larger in comparison
with the bulk case.

1. Introduction

Magnetic thin films are not only useful for practical applications such as in magneto-optical
recording but also important in the study of inhomogeneous spin systems in low dimensions.
The properties of magnetic films depend on the film thickness. The Curie temperature TC,
the value of the magnetization M , the orientation of the magnetic moments etc can depend
drastically on the thickness and structure of the film [1–3]. Experiments [4] have shown that
in the general case the Curie temperature of thin films is lower than the bulk Curie temperature
and, as the thickness of a thin film decreases, its Curie temperature also decreases. In some
special cases, TC for thin films is higher than the bulk Curie temperature, for example in Gd [5],
V [6] and epitaxial films [7].

Whereas the magnetic properties of thin magnetic films have been extensively theoretically
investigated, this is not the case for ferromagnetic semiconducting thin films. The magnetic
properties of thin films containing itinerant electrons interacting with localized spins and the
problem of inter-layer coupling have been considered by Urbaniak-Kucharczyk [8]. The
magnetic properties of thin ferromagnetic and antiferromagnetic itinerant-electron films are
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investigated within the single-band Hubbard model by Wu and Nolting [9]. Gopalan and
Cottam [10] have used the s–d interaction model to study the bulk and surface magnetic
excitations of a semi-infinite ferromagnetic semiconductor for low temperatures. The
temperature dependence of the layer magnetization and the thickness dependence of the
Curie temperature of thin ferromagnetic semiconducting films in the ferromagnetic phase
are investigated within the s–d model and a Green function formalism by Wesselinowa et al
[11]. The dynamical properties of thin ferromagnetic semiconducting films are obtained by
Wesselinowa [12]. It is shown that the frequencies of the films are smaller, whereas the
damping effects are larger, compared to the bulk.

During the last two decades an impressive development of experimental techniques has
been achieved—to even pin down the fundamental interactions in solids, such as the electron–
electron [13], electron–phonon [14, 15] and electron–magnon interactions [16]. Despite
attracting considerable interest for half a century since the pioneering work by Fröhlich [17],
the problem of electron–phonon interaction is still far from being solved, especially for thin
films. The temperature dependence of the lifetime broadening of the Gd(0001) surface
state is studied using scanning tunnelling spectroscopy [18]. The observed increase of the
linewidth with temperature is attributed to enhanced electron–phonon scattering. Coherent
surface phonons at a GaAs surface have been investigated by means of time-resolved second-
harmonic generation [19, 20]. The frequency of the surface component shows red shifts as the
pumping power increases. The shifts are indicative of a marked electron–phonon interaction or
anharmonicity of the surface phonon modes. Generally, the anharmonicity of surface phonons
modes is considered to be greater than that of bulk phonon modes. Baddorf and Plummer [21]
have revealed that the anharmonicity for the motion normal to the surface on a Cu(110) surface
is 4–5 times greater than that in bulk copper. Valla et al [22] reported measurements of the
electron–phonon coupling in ultrathin silver films deposited on a V(100) surface, obtained
from the temperature dependence of the widths of angle-resolved photoelectron spectroscopy
peaks from quantum well states in the film. A strong oscillatory variation in coupling strength
is observed as a function of film thickness.

Theoretical studies of surface phonon linewidths of Ag, Cu and Al are presented by
Rahman et al [23]. The electron–phonon coupling at metal surfaces is investigated by
Hellsing et al [15]. They have demonstrated that it is possible to understand experimental data
concerning the electron–phonon-induced lifetime broadening of surface states reasonably well
by taking into account bulk and surface electron and phonon states. The purpose of the present
paper is to investigate the electron–phonon interaction in ferromagnetic semiconducting thin
films on the basis of the s–d interaction model.

2. The model

Let us first introduce the model. We consider a three-dimensional ferromagnetic
semiconducting system on a simple cubic (sc) lattice composed of N layers in the z-direction.
The layers are numbered n = 1, . . . , N , where the n = 1 and N layers represent the two
surfaces of the system. The bulk is established by the other layers. To take into account
specific surface effects we start with the Hamiltonian of the s–d model including both bulk and
surface properties:

H = HM + HE + HME + HEE + HP + HEP. (1)

HM is the Heisenberg Hamiltonian for the ferromagnetically ordered d electrons:

HM = − 1
2

∑
l,δ

Jl,l+δSlSl+δ +
∑

i

Di (Sz
i )

2, (2)
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where the first term represents the isotropic exchange interactions and the second the single-
ion anisotropic interactions. The exchange constants J and D are supposed to be positive
and negative, respectively. The single-ion anisotropy parameter is typically smaller by some
orders of magnitude than the Heisenberg exchange interaction, |Di | � Ji j .

The parameter Ji j is an exchange interaction between spins at nearest-neighbour sites i
and j . To take into account the effects originating from the finite thickness of the system, we
introduce two interaction parameters J and Js. In the case of an interaction between spins,
situated at the surface layer, the interaction strength is denoted by Ji j = Js. Otherwise, the
interaction in the bulk material is written as J , which is for simplicity assumed to be the same as
that for the inter-layer coupling between the surface layer and the bulk as well as the intra-layer
coupling between the different layers in the bulk. Similar notation is used for all parameters
in equations (2)–(7).

HE represents the usual Hamiltonian of the conduction band electrons,

HE =
∑
l,δ,σ

tl,l+δc+
lσ cl+δ,σ , (3)

where tl,l+δ is the hopping integral.
HME couples the two subsystems (2) and (3) via an intra-atomic exchange interaction Il ,

HME = −
∑

l

Il Slsl . (4)

The spin operators sl of the conduction electrons at site l can be expressed as s+
l = c+

l+cl−,
sz

l = (c+
l+cl+ − c+

l−cl−)/2, where c+
lσ and clσ are Fermi creation and annihilation operators at

site l, respectively; σ = ±1 correspond to spin-up and spin-down states.
HEE is the electron–electron interaction term:

HEE = 1
2

∑
qk′k′′σσ ′

v(q)c+
k′′−qσ c+

k′+qσ ′ck′σ ′ck′′σ ; (5)

v(q) = 4πe2/κq2 is the Coulomb interaction, where e is the electron charge and κ is the
dielectric constant.

HP contains the lattice vibrations including third- and fourth-order anharmonic phonon–
phonon interactions:

HP = 1

2!

∑
q

(Pq P−q + ω2
q Qq Q−q) +

1

3!

∑
qq1

B(q, q1)Qq Q−q1 Qq1−q

+
1

4!

∑
q,q1,q2

A(q, q1, q2)Qq1 Qq2 Q−q−q2 Q−q1+q, (6)

where Qqλ, Pqλ and ωq are the normal coordinate, momentum and frequency, respectively,
of the lattice mode with a wavevector q. The vibrational normal coordinate Qq and the
momentum Pq can be expressed in terms of phonon creation and annihilation operators:
Qqλ = (2ωqλ)

−1/2(aqλ + a+
−qλ), Pq = i(ωqλ/2)1/2(a+

qλ − a−qλ).
The final term HEP represents interactions between the electron and the phonon systems

including anharmonic terms:

HEP = − 1
2

∑
qpσ

F(q, p)Qp−qρqσ − 1
4

∑
qpνσ

R(q, p,ν)Qν Qp−q−νρqσ + h.c. (7)

with ρqσ = ∑
k c+

kσ ck+qσ .
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3. The one-electron Green function

To study the electronic excitations of the film we introduce the one-electron Green function
gi jσ (E) = 〈〈ciσ ; c+

jσ 〉〉. On introducing the two-dimensional Fourier transform gni n j (k‖, E),
one has the following form:

〈〈c+
iσ ; c−

jσ 〉〉 = 1

N ′
∑

k‖

exp(ik‖(ri − r j))gni n j (k‖, E), (8)

where N ′ is the number of sites in any of the lattice planes, ri represents the position vectors of
site i , n = 1, . . . , N denotes the layer ordering number beginning with one surface (n = 1) and
terminating with the other surface (n = N), k‖ = (kx, ky) is a two-dimensional wavevector
parallel to the surface. The summation is taken over the Brillouin zone.

We assume for simplicity only nearest-neighbour exchange interactions and write all
interaction constants for the surface layers (n = 1, N) with index ‘s’ and all others without an
index. For the approximate calculation of the Green function (8) we use a method proposed
by Tserkovnikov [27], which is appropriate for spin problems. It goes beyond the random
phase approximation (RPA) taking into account the correlation functions N̄q‖ = 〈S+

q‖ S−
q‖ 〉,

n̄q‖σ = 〈c+
q‖σ cq‖σ 〉 and m̄q‖ = 〈a+

q‖aq‖ 〉, and the damping effects. As a result the equation of
motion for the Green function (8) of the ferromagnetic semiconducting film for T � Tc has
the following matrix form:

L(E)g(k‖, E) = I, (9)

where I is the unit matrix and

L(E) =




E − Lσ
1 + i�σ

1 −k 0 0 0 0 . . .

−k E − Lσ
2 + i�σ

2 −k 0 0 0 . . .

0 −k E − Lσ
3 + i�σ

3 −k 0 0 . . .
...

...
...

...
...

...
. . .

0 0 0 0 0 −k E − Lσ
N + i�σ

N




with

k = t,

L+
n = − 1

2 (In〈Sz〉n) + 4tnγ (k‖) +
∑

q‖

(
vn(o) − vn(k‖ − q‖)

)
n̄n

q‖−,

�+
n = π I 2

n

4N ′
∑

q‖

(
N̄n

q‖−k‖ + 2〈Sz〉nn̄n
q‖−

)
δ
(
En

q‖−k‖ − εn
q‖− + εn

k‖+

)

+

[
π I 2

n 〈Sz〉n

2N ′2
∑
q‖p‖

(
N̄n

p‖+q‖−k‖ + N̄n
p‖

)(
1 − n̄n

q‖+

)

+
π I 2

n

4N ′2
∑
q‖p‖

N̄n
p‖+q‖−k‖

(
2〈Sz〉n + N̄n

p‖

)]

∗ δ
(
En

p‖ − En
p‖+q‖−k‖ − εn

q‖+ + εn
k‖+

)
+

π

N ′2
∑
q‖p‖

v2
n(k‖, q‖, p‖)

[
n̄n

p‖−
(
1 − n̄n

k‖−q‖+ − n̄n
p‖+q‖−

)

+ n̄n
k‖−q‖+n̄n

p‖+q‖−
]
δ
(
εn

p‖− − εn
p‖+q‖− − εn

k‖−q‖+ + εn
k‖+

)
+

π

N ′
∑

q‖
F2

n (q‖)
[(

m̄n
q‖ + 1 − n̄n

k‖−q‖+

)
δ
(
εn

k‖+ − εn
k‖−q‖+ − ω̄n

q‖

)

+
(
n̄n

k‖−q‖+ + m̄n
q‖

)
δ
(
εn

k‖+ − εn
k‖−q‖+ + ω̄n

q‖

)]
,
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vn(k‖, q‖, p‖) = (vq‖ + vk‖−q‖−p‖ ) − (vk‖−q‖ + vp‖+q‖),

γ (k‖) = 1
2 (cos(kxa) + cos(kya)).

ts = −Ws and t = −W , where Ws and W are the conduction band width for n = 1, N and
for n = 2, . . . , N − 1, respectively. N̄q‖ = 〈S+

q‖ S−
q‖ 〉, n̄q‖σ = 〈c+

q‖σ cq‖σ 〉 and m̄q‖ = 〈a+
q‖aq‖ 〉

are the spin, electron and phonon correlation functions, respectively. They are calculated via
the spectral theorem. E(k‖), ε(k‖) and ω̄(k‖) are the renormalized spin wave, electronic and
phonon energies, respectively.

At T = 0 the expression for the electronic damping of the ferromagnetic semiconducting
thin film simplifies to

�+
n (T = 0) = π

N ′
∑

q‖
F2

n (q‖)δ
(
εn

k‖+ − εn
k‖−q‖+ − ω̄n

q‖

)
. (10)

Hence the electrons may be damped at zero temperature, provided that the delta function can
be satisfied. In the absence of the electron–phonon interaction the electrons with σ = +1
(in the direction of the spontaneous momentum) are undamped, whereas the electrons with
σ = −1 are damped.

Above TC the magnetizations vanish. As a consequence, the expression for the electronic
damping is simpler than below TC:

�+
n (T � TC) = π

N ′2
∑
q‖p‖

v2
n(k‖, q‖, p‖)

[
n̄n

p‖−
(
1 − n̄n

k‖−q‖+ − n̄n
p‖+q‖−

)

+ n̄n
k‖−q‖+n̄n

p‖+q‖−
]
δ
(
εn

p‖− − εn
p‖+q‖− − εn

k‖−q‖+ + εn
k‖+

)
+

π

N ′
∑

q‖
F2

n (q‖)
[(

m̄n
q‖ + 1 − n̄n

k‖−q‖+

)
δ
(
εn

k‖+ − εn
k‖−q‖+ − ω̄n

q‖

)

+
(
n̄n

k‖−q‖+ + m̄n
q‖

)
δ
(
εn

k‖+ − εn
k‖−q‖+ + ω̄n

q‖

)]
. (11)

The electronic damping of the ferromagnetic semiconducting thin film above TC arises from
the Coulomb and the electron–phonon interaction.

In order to obtain the solutions of the matrix equation (9), we define two-dimensional
column matrices gm with the elements given by (gn)m = gmn, so equation (9) yields

L(E)gn = I. (12)

From equation (12), gnn(E) is obtained as

gnn(E) = |Lnn(E)|
|L(E)| , (13)

where |Lnn(E)| is the determinant made by replacing the nth column of the determinant |L(E)|
by I . The poles En of the Green function gnn(E) can be obtained by solving |L(E)| = 0.

The layer conduction electron magnetization can be calculated from

〈sz
n〉 = fn+ − fn−

2
= 1

2N ′
∑
q‖,σ

σ 〈c+
q‖σ cq‖σ 〉n; σ = ±1, (14)

where fn+ and fn− are the numbers of conduction electrons in the spin-up and spin-down bands
of the nth layer, respectively. So, through the renormalized conduction electron energy and the
conduction electron magnetization 〈sz

n〉 we take into account the t dependence of the spin wave
spectrum and our theoretical results can be applied to narrow-band as well as to wide-band
ferromagnetic semiconductors. Equation (14) containing the localized spin magnetization
〈Sz

n〉, too, has to be calculated numerically. Due to the assumption of symmetrical surfaces,



512 J M Wesselinowa

there are N/2 equations for N/2 layer magnetizations which have to be solved self-consistently.
Above TC all magnetizations are zero.

The relative localized spin magnetization Mn = 〈Sz
n〉 of the nth layer is calculated from

the Green’s function for the magnetic excitations Gi j(t) = 〈〈S+
i (t); S−

j (0)〉〉, obtained in [11].

4. The phonon Green function

In order to obtain the phonon spectrum we have to define the phonon Green function:

Gi j(t) = 〈〈ai (t); a+
j (0)〉〉. (15)

Analogously to the case in the previous section, after a two-dimensional Fourier transformation
we get for the matrix Green function the following expression:

H(ω)G(k‖, ω) = I, (16)

where

H(ω) =




ω − V1 + iγ1 k1 0 0 0 0 . . .

k2 ω − V2 + iγ2 k2 0 0 0 . . .

0 k3 ω − V3 + iγ3 k3 0 0 . . .
...

...
...

...
...

...
. . .

0 0 0 0 0 kN ω − VN + iγN




with

kn = R(k‖, k‖, k‖)〈Sz〉2
n − B(k‖, k‖)〈Qk‖ 〉δk‖0,

Vn = ωk‖ − Rn(k‖, k‖, k‖)〈Sz〉2
n − Rn−1(k‖, k‖, k‖)〈Sz〉2

n−1 − Rn+1(k‖, k‖, k‖)〈Sz〉2
n+1

+ Bn(k‖, k‖)〈Qk‖ 〉nδk‖0 + Bn−1(k‖, k‖)〈Qk‖ 〉n−1δk‖0

+ Bn+1(k‖, k‖)〈Qk‖ 〉n+1δk‖0,

γn = 4π〈sz〉2
n

N ′2
∑

q‖

F2
n (q‖, q‖ − k‖)(n̄n

q‖+ − n̄n
q‖−k‖+)δ

(
εn

q‖+ − εn
q‖−k‖+ + ω̄n

k‖

)

+
4π〈sz〉2

n

N ′2
∑
q‖,p‖

(
R2

n(−k‖, p‖, q‖)(n̄n
q‖+ − n̄n

p‖+)
[
(1 + m̄n

k‖+p‖−q‖)

∗ δ
(
εn

p‖+ − εn
q‖+ − ω̄n

k‖+p‖−q‖ + ω̄n
k‖

)
+ m̄n

q‖−k‖−p‖

∗ δ
(
εn

p‖+ − εn
q‖+ + ω̄n

q‖−k‖−p‖ + ω̄n
k‖

)]
+

[
R2

n(−k‖, p‖, q‖) + R2
n(−k‖ − q‖ + p‖, p‖, q‖)

]
n̄n

q‖+(1 + n̄n
p‖+)

∗ [
δ
(
εn

p‖+ − εn
q‖+ − ω̄n

k‖+p‖−q‖ + ω̄n
k‖

) − δ
(
εn

p‖+ − εn
q‖+ + ω̄n

q‖−k‖−p‖ + ω̄n
k‖

)])

+
3π

N ′
∑

q‖

[
B2

n(q‖,−k‖, k‖ − q‖) + B2
n (q‖, k‖ − q‖,−k‖)

]

∗ (m̄n
q‖ − m̄n

k‖−q‖ )[δ(ω̄
n
k‖ − ω̄n

q‖ − ω̄n
k‖−q‖) + δ(ω̄n

k‖ − ω̄n
q‖ + ω̄n

k‖−q‖ )]

+
π

N ′
∑

q‖
A2

n(q‖)
[(

m̄n
q‖ + 1 − n̄n

k‖−q‖+

)
δ
(
εn

k‖+ − εn
k‖−q‖+ − ω̄n

q‖

)

+
(
n̄n

k‖−q‖+ + m̄n
q‖

)
δ
(
εn

k‖+ − εn
k‖−q‖+ + ω̄n

q‖

)]
,

〈Qk‖ 〉 = Fk‖,k‖ 〈Sz〉2 − 1
N ′

∑
q‖ Bk‖q‖(2N̄q‖ + 1)

ωk‖ − Rk‖,k‖,k‖ 〈Sz〉2
.
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At T = 0, where the part of the phonon damping due to the phonon–phonon interaction
vanishes, we obtain

γn(T = 0) = 4π〈sz〉2
n

N ′2
∑
q‖,p‖

[
R2

n(−k‖, p‖, q‖) + R2
n(−k‖ − q‖ + p‖, p‖, q‖)

]

∗ [
δ
(
εn

p‖+ − εn
q‖+ − ω̄n

k‖+p‖−q‖ + ω̄n
k‖

) − δ
(
εn

p‖+ − εn
q‖+ + ω̄n

q‖−k‖−p‖ + ω̄n
k‖

)]
. (17)

It is seen that at T = 0 the phonon modes of the thin film are damped due to the electron–phonon
anharmonic interaction if the δ functions can be satisfied.

In the vicinity of TC and above it, T � TC, only the phonon–phonon anharmonic terms
contribute to the phonon damping:

γn(T � TC) = 3π

N ′
∑

q‖

[
B2

n (q‖,−k‖, k‖ − q‖) + B2
n (q‖, k‖ − q‖,−k‖)

]

∗ (m̄n
q‖ − m̄n

k‖−q‖ )[δ(ω̄
n
k‖ − ω̄n

q‖ − ω̄n
k‖−q‖) + δ(ω̄n

k‖ − ω̄n
q‖ + ω̄n

k‖−q‖ )]

+
π

N ′
∑

q‖
A2

n(q‖)
[(

m̄n
q‖ + 1 − n̄n

k‖−q‖+

)
δ
(
εn

k‖+ − εn
k‖−q‖+ − ω̄n

q‖

)

+
(
n̄n

k‖−q‖+ + +m̄n
q‖

)
δ
(
εn

k‖+ − εn
k‖−q‖+ + ω̄n

q‖

)]
. (18)

We obtain solutions of the matrix equation (16) analogous to those of the previous section.

5. Numerical results and discussion

Firstly we will study the effects of the electron–electron and electron–phonon interactions
on the electronic energy and damping of thin ferromagnetic semiconducting films. Thin
films are of particular interest because their critical properties are more affected by surface
parameters than thicker films. The temperature dependence of the renormalized electronic
energy is calculated numerically for a simple cubic (sc) thin ferromagnetic semiconducting
film with parameters for CdCr2Se4 [24]: Js = 0.2J , Ds = D = 0.01 eV, Is = 0.2I ,
ts = 0.05t , Fs = 2F , Rs = 2R, Bs = 2B , As = 2A, J = 0.1 eV, I = 0.5 eV, t = 0.1 eV,
B = −2.54 cm−1, F = 23 cm−1, R = −18 cm−1, A = 6.61 cm−1, S = 3/2, W = 0.1 eV,
U ≡ 0.5v(k) = 0.3 eV, k = 0, TC = 130 K. At a solid surface, the crystal symmetry is
broken, and the anharmonicity is expected to be a factor of 2–3 greater than in the bulk [25, 26].
Therefore we have chosen greater surface anharmonic constants compared to the bulk ones.
It will be shown that the enhanced surface anharmonicity leads to a decrease in energy and
increase in width of a surface phonon.

With increasing Coulomb interaction constant the electronic energy increases, too. This
is valid for the spin-down (σ = −1) band energy for all temperatures and for all bandwidth
values W . For narrow bands W � U (for example W = 0.1 eV) the Coulomb interaction
constant U does not influence the spin-up (σ = +1) band energy at low temperatures. For
W � U (for example W = 1 eV), at low temperatures, U increases the spin-up band energy
for |W − 0.5I S| � U and decreases it for |W − 0.5I S| < U . Above TC the electronic energy
increases with U .

The electronic spectrum is renormalized at T = 0 due to the s–d and electron–phonon
interaction. In the absence of the electron–phonon interaction only the energy of the spin-
down band is renormalized at T = 0 due to the s–d interaction. In figure 1 the temperature
dependence of the electronic spectrum is presented for a thin (N = 8 layers) film. The surface
mode is clearly distinguished (curve 1, n = 1) from the bulk modes (curve 2, 3 and 4, n = 2, 3
and 4). With increase of the surface spin–spin Js or s–d Is interaction constants, the difference
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Figure 1. The temperature dependence of the electronic energy ε for a ferromagnetic
semiconducting thin film for N = 8 and different layers: (1) n = 1, (2) 2, (3) 3, (4) 4.
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Figure 2. The temperature dependence of the electronic damping �+
el for a ferromagnetic

semiconducting thin film for N = 8: (1) �+
el−el, (2) �+

s−d, (3) �+
el−ph, (4) �+

el.

between the surface and the bulk modes is enhanced. The calculations show that the electron–
phonon interaction lowers the surface energy and the energy of the thin film, and cannot be
neglected. The electronic energy of the film with N > 30 layers coincides with that for the
bulk.

The electronic damping �σ
el of the thin film is larger compared to the bulk one. At low

temperatures the damping is very small and increases very strongly with increasing T → TC

(figure 2). The scattering terms give more important contributions to the damping than the
decay terms. The former terms are of higher order in 1/z than the latter terms, but they are
usually omitted in an expansion with respect to powers of 1/z (z is the number of the nearest
neighbours). Here we have no 1/z expansion and so we have taken into account all summation
terms. �σ

el contains the following terms due to the different interactions:

�σ
el = �σ

s−d + �σ
el−el + �σ

el−ph. (19)

The delta functions in �σ
el−ph can be satisfied only for small k, (k ≈ 0). For all temperatures

this term is very large compared with the other two terms, which is in agreement with the
experimental data of Rehbein et al [18], where the observed increase of the linewidth with
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temperature is attributed to enhanced electron–phonon scattering. At low temperatures the
contribution in the electronic damping caused by the electron–electron interaction is very
small compared with the term due to the s–d interaction. Therefore at low temperatures we
obtain

�σ
el−el � �σ

s−d � �σ
el−ph, T � TC. (20)

For T ≈ 0.5TC we have �σ
el−el ≈ �σ

s−d, whereas at higher temperatures (T > 0.5TC) the part
from the electron–electron interaction predominates over this due to the s–d interaction. So
we can write

�σ
s−d � �σ

el−el � �σ
el−ph, T > 0.5TC. (21)

In the vicinity of TC for W 
 U we have �σ
s−d 
 �σ

el−el, whereas for W � U we have
�σ

s−d � �σ
el−el. For W ≈ U we have �σ

s−d ≈ �σ
el−el. For constant bandwidth W with increasing

electron–electron interaction U the electronic damping increases, too. The temperature
dependence of the lifetime broadening is mainly given by the temperature dependence of the
electron–phonon scattering rate. The electron–electron scattering shows weaker temperature
dependence, in agreement with the theoretical results of Rehbein et al [18]. The theoretical
investigations of Hellsing et al [15] also show that the damping due to the electron–phonon
coupling is greater than the damping caused by the electron–electron interaction. But unlike
us, they obtain a temperature independent �el−el.

Now we will study the effects of the electron–phonon and phonon–phonon interactions on
the phonon frequency and damping of thin ferromagnetic semiconducting films. The phonon
energy for the phonon mode ω0 = 100 cm−1 (D mode) and the damping were calculated
numerically using the same parameters as for the electronic spectrum. Some interesting
features are observed from the results obtained. The surface phonon energy ω̄s is much
smaller than the phonon energy of the inner layer ω̄N/2; the surface phonon decrease is four
times greater than that observed in the bulk. This is due to the lower coordination number of
the surface phonons and to the electron–phonon interaction. With increasing electron–phonon
interaction constant the surface phonon energy decreases, in agreement with the experimental
data of Watanabe et al [20]. The surface damping γs is much larger compared to the damping
of the inner layer γN/2. The big difference between the surface spectrum and the spectrum of
the inner layer can be explained as the result of surface modes, which are damped quickly on
going into the bulk due to the confined geometry, and due to the electron–phonon interaction.

The temperature dependence of the renormalized phonon energy ω̄ is plotted in figure 3
for a sc ferromagnetic semiconducting film for different thicknesses of the film (N = 6 and
8 layers) with and without electron–phonon interaction. It can be seen that the electron–
phonon interaction reduces the phonon energy and must be taken into account if we want to
obtain correct results and to explain the experimental data. With increasing film thickness
the frequency increases, too. For N < 30 layers we obtain that ω̄TF < ω̄B, i.e. the phonon
frequency of the thin film shifts to lower energy due to the existence of a surface mode and
due to electron–phonon coupling. This is in agreement with the experimental data of Chzang
et al [19]. The phonon energy of the film with N > 30 layers coincides with that for the bulk.

The phonon damping γph = γph−ph+γel−ph is plotted in figure 4 as a function of temperature
for various film thickness (N = 8, 16 and 30 layers). The main signature of the electron–
phonon contribution to the lifetime broadening is the temperature dependence. The electron–
phonon interaction enhances the phonon damping of the thin film. The damping increases
near Tc, reaches a maximum, and then remains nearly constant. At T = 0 the phonon modes
are damped due to the electron–phonon interaction. Only the electron–phonon anharmonic
interaction terms contribute to γph at T = 0. In the vicinity of Tc and above it, where the
magnetizations 〈Sz〉 = 0 and 〈sz〉 = 0, only the phonon–phonon anharmonic terms contribute
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Figure 3. The temperature dependence of the phonon energy ω̄ for a ferromagnetic semiconducting
thin film for different film thicknesses: (1) N = 6, (2) 8, dashed curve—with and full curve—
without electron–phonon interaction.
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Figure 4. The temperature dependence of the phonon damping γph for a ferromagnetic
semiconducting thin film for different film thicknesses: (1) N = 30, (2) 16, (3) 8.

to the phonon damping. It can be seen that there are several differences between the thin film
and the bulk behaviour. Thinner films have larger damping. For N < 30 layers we have
γTF > γB; i.e. the damping is larger for thin films than that for the bulk, in agreement with
the experimental data obtained for Fe thin films by Roehlsberger et al [4]. So, it is clear that
the anharmonic terms play an important role in the lifetime broadening and must be taken into
account if we want to obtain correct results for the damping effects at surfaces and in thin films.
Baddorf and Plumer [21] have shown experimentally that the anharmonicity at the surface is
4–5 times greater than that in the bulk.

6. Conclusions

Beyond the random phase approximation we get the renormalized electronic spectrum for a
sc ferromagnetic semiconducting thin film. The electron–phonon coupling plays an important
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role. It decreases the surface electronic energy of the film. The electronic damping is obtained
and calculated numerically. At low temperatures we obtain �σ

el−el � �σ
s−d, whereas at higher

temperatures we have �σ
s−d � �σ

el−el. The term �σ
el−ph is for every temperature very large

compared to the other two terms in the electronic damping, so it must be taken into account
if we want to explain the origin of the lifetime broadening of electronic states at surfaces and
in thin films. The damping in thin films is greater compared to the bulk case due to surface
effects and electron–phonon interactions.

We have shown for the first time the importance and the influence of the electron–phonon
interaction on the phonon spectrum of thin ferromagnetic semiconducting films. The phonon
frequencies are smaller, whereas the damping effects are larger, in comparison to the bulk. The
phonon modes display a non-linear temperature dependence due to the fourth-order anharmonic
phonon–phonon interaction and the third-order anharmonic electron–phonon interaction. At
low temperatures the electron–phonon anharmonic terms play an important role in the phonon
damping, whereas at T � Tc the anharmonic phonon–phonon interaction is important. The
observed increase of the linewidth with temperature is attributed to enhanced electron–phonon
scattering.
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